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ABSTRACT

A mathematical technique to obtain an approximate
analytic solution to the trajectory problem of a planetary
(or lunar) flyby or impact is presented for the coplanar case.
The approximate solution is_valid in regioﬁs including both
the approach phase (transition region) and the encounter
phése (dominant planetary or lunar force region). For a
spacecraft impacting upon a fictitious planet of point mass,
the approximate solution is shown to be nonsingular at the : a
time (or point) of impact. The numerical accuracy of the , :
solution has not been tested, due to lack of availability of
a computer program for direct integration of the nonlinear

differential eguations of the coplanar case.

(é71 12013) AN ADPPR . JA/VIQ‘? v.jl
St e OXIMATE ANALYTIC N79-71 WGy, F
SOLUTION TO TRE RESTRICTED THREE-BODY 8u4 'QE‘/VF £
PROBLEM (Bellcomm, Inc.) 35 p f”ﬁg«,,-;g 2
AR ~S
Unclas By &7
00/12 12883 &
& VT IT YR imA UK AU NUMBER) (CATEGORY) Q4L N
“"M T T | | TR SO0 NG A ) [T T ¢ PR VA S . ¥ LR = g T R ‘
[ IR 4 R
M B S I]ll!lll/lfllll___llIIJ,IIIII_J_J.JM
verd L A\ I &



BELLCOMM, INC.

955 L'ENFANT PLAZA NORTH, S.W. WASHINGTON, D. C. 20024 B71 12013

SUBJECT: An ApproXimate Analytic Solution paTE: December 21, 1971
to the Restricted Three-Body
Problem - Case 105-9 fFROM: C. C. H. Tang

MEMORANDUM FOR FILE

I. INTRODUCTION

The trajectory study of a spacecraft moving
in solar orbit toward the vicinity of a planet falls in
the class of restricted three-body problems. At present, the
so-called patched conics method, matched asymptotic expansion

[6]

methodEl]_[S] or separatrix method can be used to obtain
approximate trajectories, whereas final accurate trajectories
are always obtained by numerical integration of the equations of
motion. The method of numerical integration can yield useful
numbers but not the insight that an analytic solution can impart.
For planetary (or lunar) flyby or impact problems, there is no
known analytic solution which is valid in regions including both
the approach phase (transition region) and the encounter phase
(dominant planetary or lunar force region). It is the purpose

of this paper to show that such an approximate analytic solution

in these regions can be obtained by a technique that provides
a single continuous solution in these two regions without
resorting to matching two solutions.

There is no available method to solve the general non-
linear vector equation of motion of a restricted three-body
problem, but for planetary flyby or impact problems, we show
that the scalar component equations of the vector equation can
be "linearized" in the region of interest and can be solved
without difficulties of encountering a singularity in the
neighborhood of the perturbing body. For the coplanar case
in a polar coordinate system, the equations for both the time
of flight t and the heliocentric distance r of the spacecraft
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[7]

contain a continued fraction in integral form with 6 (the polar
angle between r and the reference direction) as the integration
variable. The accuracies obtainable in solving the component
equations depend on the accuracy of the approximate value
(determined by the number of fractions taken into consideration)
to be used in evaluating the continued fraction. The linearized

differential equation of motion appears in the form

2
d 1 d, K1l 1, _
EZ—(E) + e€5(9) d—S.(f) + (E) = F(6) ,

where ¢ is a constant much smaller than unity, S(6) approaches
a very large value or infinity as 6 approaches e or zero, and

F(e) is the forcing function.

For an arbitrarily prescribed S(8), the homogeneous
part of the above differential equation cannot be solved exactly
by presently known mathematical methods. However, it can be
shown that the differential equation can be solved approximately

with prescribed accuracy in the region of interest by the metho

jah

described in references [8] and [9)]. The approximate homogene-

ous solution of the above equation has the form

2

X . X p X
if (w + TS)dX % —if (Zute®S)dx “EI S dx
1 _ X4 X3 %3
r- ¢ A+ B e e dx{ ,

X.
1

and is accurate to o(ez) in the region of interest where S (8)

becomes very large or singular as 6 approaches zero.

In the following section, we shall show how the
imhomogeneous differential equation of motion is obtained, lin-

earized, and solved.
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II. MATHEMATICAL FORMULATION

In the sun (mass M) - centered polar coordinate
system shown in Fig.l, the vector equation of motion of a space-
craft s (mass ms) moving, under the influence of the sun, toward
the vicinity of a destination planet p (mass m) is

r= —G(M+ms)£3 - Gm<£§£ + 5-3’-) , (1)
r rps rp
where G is the universal gravitational constant,

r is the vector from the center of mass of the
sun to that of the spacecraft,

Ep is the vector from the center of mass of the
sun to that of the destination planet,

gps is the vector from the center of mass of the

planet to that of the spacecraft, and

sl dl

r,rp,rps are respectively the magnitudes of r, r

y .

“B° ~Ps

Assuming the condition M>>m>>ms, we can write Eq. (l) as

- r EES £E
r = -GM ;3- + u<r3 + r3) . (2)
ps p

where po= (2a)

4=

Previous studies[l]_[G] have encountered the difficulty that
the perturbing term of Eq.(2) apparently becomes very large or

singular when rps approaches zero. 1In reality, however, the
perturbing term may tend to be extremely large but never become

singular for the case of a flyby or direct impact, since rps
does not vanish even in the case of direct impact due to the
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fact that the moon or planets are not point masses. This fact
will be exploited in the formulation to be followed.

The vector equation of motion of Eq. (2) can be
resolved into components along and perpendicular- to the vector

r, for the coplanar case, as:

r - ré2 = -GM iz + p(% + QcOsB) ' (3)
r r
ps
ré + 2ré = -uGMQ sing, (4)
3
1 r
where Q== 1 - ;E— , (5)
rp ps

6 is the angle between the reference direction

y and r, and
B is the angle between Iy and r as shown in

ig.l.

Integration of Eq. (4) yields:

h rt

6 = d.._e = —_O..[l - 'EE-D—& rQSiant] ’ (6)

dt 2 h
r o ti

where h0 is the constant of integration or the initial specific
angular momentum of the spacecraft with respect to the sun.
Inverting and integrating Eq. (6) yields:

) t
r2 GM .
t = =1 - Ph— rQsingdt|{ de¢ . (7)
5., © ° &

i i
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Equation (7) is an integral equation in the unknown t to be
solved. The nonlinear differential equation of motion in the
form of Eq. (3) can be transformed into a more tractable form by
letting r = % and becomes

-2

2 2 2 3 de h y
de h vy yrps o to

2 . t .
¥, y= M1+ ——( LE— QcosB + _____Qs;ns éy_) 1- ———“GMI Qsinbyy
o

(8)

Note that Egs. (7) and (8) are exact and contain the same factor

N=E-gﬂj Q_Y_Bdt] (9)
o t.

1

With the aid of Eq. (7), Eg.(9) can be cast into a continued
[7]

fraction in integral form as

GM Qsinpds
N=1- 5 7 6
he ( }
3 uGM Qsingde
8. l = —
i ﬁ hg 0 7
3|, _ uGM Qsinpde P
%5 YT
o ( _ uGM[ Qs1nB )
\
ei /
b

0
+J Pds (9a)
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t
Neglecting the ternh!. hoszdt, we can simplify Eq.(9a) as
£
6
NZ1+ —Fa (9b)
Pde
Yo, 1+ 5
1+ a2nfl + f Pds
0, °i
i
where p = - KSH BSind (10)
hO y

The accuracy of N is determined by the number of fractions
taken into consideration and will be discussed fully in
Appendix I. The accuracies of Egs.(7) and (8) are in turn de-
termined by the accuracy of N. By using Egs.(9) and (10),

Egs. (7) and (8) appear respectively in the following neat forms:

£ = (11)
2!
1
a? P 4
__}21+—2—%+y=1r, (12)
das N
where F=-SM ) /1 Qcosg) |, (12a)
2..2 2 3
h''N y MWr
o ps

is the forcing function.

In an attempt to simplify the problem, we linearize

the nonlinear terms in Egs.(l1l) and (12) by series expansions about
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e=ec where the sun, planet, and spacecraft are colinear. 1In
doing sO we can express P, N, and F explicitly in terms of 9.
In this and the next few paragraphs we shall obtain the series
expansions of r, rp, g, and rpS in terms of 6. As mentioned
earlier, the distance rps between the center of the destination
planet and the spacecraft is nonvanishing, even for the case of
direct impact with a non-point-mass planet. If we specify the
distance between the center of the destination planet and the
spacecraft to be S at the time when the sun, destination planet,
and spacecraft are colinear (i.e., when 6=6 =08 , or B8=0), the
zeroth-order approximate solution of the spgcegraft orbit is

an ellipse

2
a_ (l-e?) h/GuM
r = o) 0 _ o (13)
o) 1+ e, cos(e—wo) 1+ e, cos(e-mo)
TN _ . L. th - . . .
wiiere a 1s the Zero -order semi-major axis of

the ellipse,

e_ 1is the zeroth-order eccentricity of th

ellipse, and

w_. is the zeroth—order argument of peri-
center of the ellipse.

Note that agr ey and g of Eq.(13) are obtained by the Lambert
Theorem under the initial condition that

r(6=ei) =r, at t = ty (14)
i i

and the terminal condition that

at t =t

r(e=ec) = rp(ep=ec) + s, 6 (14a)
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where s can be either positive or negative.

The series expansion of r, of Eq. (13) about =6, is:

1 2,1 3
_ ' _ * n — T m — . o e
r, = ro(ec)+ ro(ec)(e ec) +2!ro(ec)(e 6C) -+3!ro(ec)(e ec) + ’
(15)

where prime denotes the derivative with respect to 6.
If we make the substitution x=6—ec, Egq. (15) becomes

r =r (0)(1 + &, x + &§ x2 + 8 x3 + --) (16)

o o 1 2 3 !
where
[ ] (1] "
.- ro(O) . - 1 rO(O) . 1 ro(O) (17)
1 r (0) ' 2 2t r (0) ' 3 3t r (0) °

o
o
o

Note that for e<ec;x is always negative. For e050.25, Eqg. (16)

is accurate to 10~ ’ of Eg.(13), when [x|{<0.0l1 and terms up to

x2 are retained or when |x|<0.05 and terms up to x3 are retained.
For e_<0.1, Eq.(16) is accurate to 1078 of Eq.(13) when |x|<0.01
and terms up to x% are retained, or when |x|<0.1 and terms up to

3 .
X~ are retained.

The orbit of the destination planet can be represented
by an ellipse

2 2 2

a (l-e a_(l-e h™/GM

r = 1 P( P) =1 P( P) = T P/ ,
+ - + =B~ + —B=-w +

p eP cos(ep wp) ep cos (6-B wp) ep cos (x-8 wp ec)

(18)
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where
a_ 1s the semi-major axis of the planetary
orbit,

e_ is the eccentricity of the planetary
orbit,

w_ is the argument of pericenter of the
planetary orbit,

ep = §-p is the angle between the refer-
ence direction y and Iy and
hp = [G(M+m)ap(l—e;)]l/2 is the specific

angular momentum of the planet with
respect to the sun.

The series expansion of rp of Eq. (18) about x=0 is:

= T (00 I+ ap(x-g) + 8, (x-8)% 4 ay-5)7 4 eu] (19)
where
r' (0) r* {0) r"(0)
A]_ =P ___ ’ Ay = 'L £ ’ A = —1_ ‘ (20)
rp(O) 2 21 rp(O) 3 3! rp(O)

In order to show rp of Eqg. (19) can be represented explicitly in

terms of x, we must also express R in terms of x.

To express B in terms of x, we have to make use of
the series expansion of the time of flight of the destination
planet and that of the spacecraft; they are, respectively,

- ] - l " - 2 L "y - 3 e e
t,= £,(0) +£1(0) (x=8) + 572 (0) (x=8) “+ F7EN(0) (x=8)~ + -+, (21)

P ] __]'_“ 2 _L." 3 e s
to——tQ(O)i-to(O)x + 2!to(O)X + 3!to'(O)X + ’ (22)
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where the derivative of time with respect to x can be shown to

be (prime denotes the derivative with respect to 6 or x)

\ _ L2 " _ . )
£1(0) = x2(0)/h, €5 (0) = 24) t1(0) ,
£"(0) = 2(a2+24.)t" (0)
p o722t pttyt
and ?(23)
' _ .2 " _ _N'(0)7.,
£ (0) = rZ(0)/h N(0) , £ (0) = [251 70} ]to(o»
m — 2 - N (0)
£1(0) = [2(al+252) (1+46 1) F705 ]t (0)

where N(0) is defined by Egs.(%a) and (10) and the zeroth-
order approximation of N(0) is unity as shown in Appendix I.

Since tp=tO at all times and tp(0)=to(0), we have by
equating Egs. (21) and (22)

£ (0) (x48) + Zt" (0) (x+8) % + =t™(0) (X+B)> + +-+ =
4 s J. P

té(O)x + ——t“(O) + §Tt”(0)x e, (24)

Neglecting terms containing 8" or x" with n23 for the sake of

simplicity, we obtain the following quadratic equation in B8

1

l " " i L 2 2 - ' " =4m 2
2[tp(O)-i-tp(O)x-i—ztp(O)x 18 [tp(O)i-tp(O)x+ 2tp(O)x 18

' - ' l n - " 2 =
+[tp(0) to(O)]x + t" (0) to(O)]x 0 . (25)

2[ P
The solution of Eq.(éS) is approximately

= —(klx + k2x2) ' (26)
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where
2
t!(0) h_2
— o —, — -
Ky =tvoy - L= amqor - L (27)
P o
and
1 £5(0) ? N'(0)
k2='7€;757 t2(0) - tp(O té(O) = (1+kq) |8, - 8, (1+k ) - N7 |
(27a)
with ,
r (0) S
o _ c
L = rp(o) =1 + rp(O) . (28)

: 3 .
Note that if 33 and X~ terms were retained, we would have to solve
a cubic equation, and the solution would be more accurate for
larger values of x.

Equation (19) then becomes, by retaining terms up to x2,
r = r (0)(l+ D,;x + D,x°) (29)
p J-P 7\ l‘ 2 7
. o L2 PPN
where Dl = Al(l+kl) ' and D2 = A1K2+ AZ(L+K1) . (30)

The distance from the center of the planet to the
spacecraft is
2 2

rps = [rp + r° - 2rrp cost%]l/2 (31)

In terms of Egs.(16), (26) and (29), Eg. (31) can be approximated,
by retaining terms up to x2, as

1
2
rps = rp(x)(a+bx+cx2) ’ (32)
where a = (2-1)2 , b = 2¢(2-1)(6,-D;) , and
2 2 2 (33)
= —on - _ _ 12
c [2(21+262+3D1 2D,-46,D,) -2(s, D,+D"-8,Dy= 3k])]
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Note that rps does not vanish and is equal to r, (0)- r (0) as x
approaches zero. Note also that a=b=0 when &= l i. e., when
ro(0)=rp(0) or sc=0 for a fictitious point-mass planet.

With the expansions introduced in Egs. (16), (26),
(29), and (32), Eq.(10) becomes

p=-l‘-c25—M95—13n£=eU(x) , (34)
h N
o
where
e = My r 023  and Uk = x(l+fx) |1 - 1 i
n2 1'p 5 372
o (a+bx+cx”)
.. (35)
Similarly, Egs.(11) and (12) become
2 2
r (0)2 (1+5$ 1X+8,%%)
= N{x) dx , (36)
and
d2 r [ {l+b,x+c x2)
—%+eS(x)%§:—+w2y=F(x) = o {131 13/2
dx hON (x) (a+bx+cx )
2 2 1
+ 2 (l+b2x+c2x yf1 - 5 373 ’ (37)
(a+bx+cx®)
where
s(x) = Ux)/N%(x) , (37a)

Note that U, and therefore S, vanish as x approaches zero since a
is nonvanishing for |[s_|>0.
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and
k
_ _ _ 2 \
w=1, £=36) - 2D + =,
1
b, = 3(8,-D,) c. = 3(6.-D.+82+2D%=36.D,) > (38)
1 17P1? 1 2P0y HeD=309D4)
_ _ ' _ _ 2,..2 _ 1,2

It is important to note that as x approaches zero eS(x) and
F(x) do not display the troublesome singular behavior that was
encountered by previous investigators[ll—[sl of restricted
three-body problems. In fact, S(x) approaches zero as x does
except in the case =1 (sc=0), when S(x) varies as - c_3/2 x-2

as X approaches zeroe. This case will be discussed later.

It turns out that the following integral can be
integrated

x x L.
n{x) = Pdx = e[ U(x)dx = el 1,&— + # fx)xz (39)
J L\L 2 F4
X, X.
i i
2 X
_ 2a(bf-2¢c) + [f(b -g)-2bc]x _ Db sinh-l (b+2cx)
2 1/2 c3]2 Ja !
cg(a+bx+cx ) 9 %
i
where g = 4ac - b2 > 0. (39a)

For realistic cases where a and b are always non-vanishing, we
show in Appendix I that n(x) is always positive for negative
values of x,and less than unity. With the aid of Eq. (39), the
evaluation of N(x) of Eg. (9b) can be simplified somewhat.
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Although Eq. (37) is linear, there is no available
analytic method to solve the homogeneous part of the equation
exactly due to the presence of the variable damping coefficient
eS(x). One possible approximate method is to consider the
damping term eS(x)%% as a perturbation term and apply
Poincare's first-order small-parameter expansion. This
approximation method, however, would not be accurate enough for
our purpose since £S(x) for the case of a close flyby could be
a few orders of magnitude larger than w2=1 in the region where
X approaches zero. Figure A2 in Appendix I should represent the
order-of-magnitude variation of eS(x) very closely since eS(x)=
P(x)/Nz(x), where Nz(x) ranges between unity and about two, as
shown in Appendix I. To gain some physical insight we also plot
both eS(x)%% and F(x) in Fig.2 for different values of s _. Note

c
the steep variations and change of sign of F(x) in the neighbor-

4 and O.ZSXl0_4.

hood of the sphere of influence for cases sc=10_
Also note that there is always a region where es(x)%ﬁ and F(x)

are of the same order of magnitude.

An approximate method to solve a differential equa-

tion similar to the homogeneous part of Eg.({37) has recently
. . . _[8]1-19] . .
been developed *“‘. The approximate homogeneous solution

thus obtained is accurate to O(ez) and has the form[9]

X 2
i (w + %—S)dx
x5
y; = e / (40a)
X
-1
Yy = yl] [y;6(x)] ~ dx = y,I(x) , (40b)
X.

1
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with
e[Xde
X
-1 Xy
I(x) =I [ylf,(X)] dx , £(x) = y,e ’ (40c)
X.
1
and
A=y x)
R
B = yﬁ(xi) - i[» + 5 S(xi) yh(xi) . (404d)

where yh(xi) and yﬂ(xi) are the zeroth—order trial initial
conditions obtained from Eqs.(13) and (14). The approximate
solution, Eq. (40), is accurate to o(ez) as shown in reference
[9]. The relevant important results of reference [9] are

summarized in Appendix II,

The particular solution of Eq. (37) has the
following form:

~

E]. S(a)da

X

o

¥, = %J{ [y (a) y,(x) = y,(a) y;(x)]F(a) e * da,  (41)
X

i

where K is a constant obtained from Abel's formula for the

Wronskian. 1In this case,

X
EI S(x)dx

X, ,
K=e * [y; (%) ¥,(x) - y,(x) y;(x)] = 1. (41a)
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The approximate general solution of Eq. (37) therefore is

X
Y=Yh+Yp= A-IF(X)E(X)I(x)dx +

X.
1
X

B + I F(x)g(x)dx|I(x)}yy, (x)
X.
ER

X
x BT L F(x)&(x)dx
=y, (X)|A + ] = dx . (42)
- E(X)yl(X)

i

The derivatives of the solution can be obtained neatly as follows

2 X
i[n+52—S(X)]y+€_(l”‘_)E3+[F(X)E(X)d){l ' (43)
Xy =

2

2 2
" —[w+%—-8(x)] +i%——s‘(x) Y

X
€S (x)
- €(X)E3 +]F(x)£(x)dx]+ F(x) . (44)

X.
1

=
0

09
[

Equation (44) can be expressed in terms of y' of Eq. (43) as:

2 2 2 2
y" = {-lu + %S(x)] + i[eS(X)(w + 52-— S(x))+ %_—S'(X)] Y (x)

- eS(x) y'(x) + F(x) . (45)
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Comparison of Eq.(45) with the original differential equation (37)
indicates that Eq.(45) is in error only in the coefficient of y

2
by a very small real part %T S(x) and an imaginary part

2 2
[aS(x) (w + 32-— S(x)) + 87 s' (x)] . These are in agreement with
the results obtained in reference [9]. At x=0, S(0)=0,
U'(0) 1
S'(Q) = = - and Eq. (45) becomes
N2 (0) a3/2y2 o)
2 . 82 . 2
Y"(O) = =1lw +1—?7ﬁ—-y(0) +F(0) = =W y(O) +F(0) . (46)
2a N~ (0)

The approximate second derivative of Eq.(45) is therefore
identical to the original differential Eq. (37) at x=0.

The spacecraft distance from the sun and its deriva-
tives with respect to x can thus be obtained from Egs. (42)
through (44) as follows:

~
P
~J
~—

R | Pt
y© Y| Y VY7
It is evident, however, that due to the presence of the perturb-
ing destination planet, y(0) thus obtained from Eg.(42) will not
meet the required terminal condition specified in Eq. (l4a) be-
cause the initial conditions used in Eq. (40d) are obtained by
ignoring the presence of the destination planet. To meet the
terminal condition of this targeting problem, or two-point
boundary value problem, the initial conditions used in Eg. (404)
must be perturbed. Methods, such as the steepest descent method,
to perturb the initial conditions in the most efficient way to

meet the terminal conditions will not be discussed in this paper.
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Equation (42) is the formal approximate solution of
Eg.(37) and the accuracy of the solution can be examined only
by comparing this solution with that obtained by numerically
integrating the original nonlinear second order differential
equation (2) or other equivalent. Lacking such a program, we

cannot carry out the numerical comparison.

Before investigating the case of a fictitious planet
of point mass, we reiterate the general applicability of
Egs. (36) and (37) to the case of a spacecraft colliding with
the actual destination planet. It is quite clear that, since
the planet has a finite size, Egs.(36) and (37) can be used
without any difficulty as they are. In this case S might be
slightly smaller than the radius of the destination planet.

IIT. FICTITIOUS PLANET OF POINT MASS

Here we shall investigate the special case of a
spacecraft colliding with a fictitious planet of point
mass, since this corresponds directly to the case assumed
by previous investigatorsllj—lbj, who have had mathematical
difficulties in obtaining solutions in the vicinity of
an apparent essential singularity of their differential
equations. We shall show that when the singularity of such an
equation is approached properly, we can always obtain a non-
singular solution even at the singular point. We shall first
derive the differential equation for this case from Egs. (36)
and (37). At the time of collision, namely, as x+0, the dis-
tance S between the spacecraft and the fictitious point-mass
plant approaches zero and from Eq. (28) we have 2=1l. In turn we

have from Eq. (33) the coefficients a=b=0 and c=(61—Dl)2+k2

17 and
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Egs. (36) and (37) can be simplified, respectively, as

2 X 242
r- (0) (l+dlx+52x )
£ = —%;—— NG ax , (48)
X .
1
32 coxeEf 1 Nay o2 (495"
5;5 2 () 3/2_3)ax
(8.-D.)+ \§.-D_+ 6%-s.D.+ —=x)x
-39%——— L+u| (1 + byx + czxz) $—12 1 23/3 5 1 11 2 )
hoN (x) c X

To study the characteristics of Egs. (48) and (49) as x»0, we
simplify these equations as

ré(o)]lx dx
t = (50)
h N, (x) '
X
2 U. (x) 6;-D
d__%_e ]2: %Y.+m2y=—2GD§—-—l+ul+—%—/—2—l—2 =FI(X)' (5
dx NI (X) X hoNZ (x) c X
I oI
(51)
where U (x) ~» —r as x »~ 0
1 3/2.2 ' !
c X
(52)
NI(x) - 1 + o(0) , as x - 0 .

Although both the coefficients of %% and F_(x) of Eq.(51) are

singular as x>0, the solution in the form of Eq. (42) is
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nonsingular due to the fact that the integrand of Eq. (42),

B +IFI(X)€(X)dx Fo(x)E (x)

E®y; (K) %30 £ (X)yy (X) + E(X)¥] (X)

F (%) € (x) P (ONZ (%)

= = , (53)
g(x)yl(x)[i(£u+w+ezs/2)+es] eUp (x)y, (x)

remains finite as x 0. Since both UI(x) and FI(x) vary as x—2
as x 0, their ratio in Eq. (53) is nonsingular. Accordingly,
there is no singularity in the solution even for the case of

a direct impact of the spacecraft with a fictitious planet

of point mass.

IVv. SUMMARY

An approximate analytic solution to the trajectory
lem of a spacecraft moving, under the influence of the
sun (or earth), to the vicinity of a planet (or moon) has been
presented for the coplanar case. The solution is valid in
both the approach phase (transition region) and the encounter
phase (dominant planetary or lunar force region). The solution
is shown to be nonsingular at the time (or point) of impact, even
for the case of fictitious planet of point mass. The numerical
accuracy of the solution has not yet been testzd, due to lack of
availability of a computer program for direct integration of the

nonlinear differential egquations of the coplanar case.
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APPENDIX I

A CONTINUED FRACTION IN INTEGRAL FORM

The purpose of this appendix is to show that the time
of flight expressed in the following integral equation

-1

6 t

2

£ = [E_h(_ﬁ’_l_ 1 - ﬁ—Gﬁ r(8)Q(e)sing(e)dt| de (7)
[e] (o]

i i

can be solved approximately by the method of continued fraction
and the accuracy of the solution t depends on the number of

fractions taken intc consideratio

3

[t

1 in evaluating the integral.

Differentiating Eq. (7) with respect to 6, we have

— t — =1
2 L e
at = rh(e) ll - }EIG—M r(8)Q(6)sing (8)dt )
< L o t. _1

1
-—

Substitution of the above equation into Eq. (7) repeatedly for
four times yields

b 2

= r=(0)

t—Imde, (11)
o, ©

i
where N is shown in Eq. (9a).

Further repeated substitutions will introduce more
fractions and more accuracy in N, but we choose only up to four

substitutions here in order to limit the complexity in evalua-
ting N.
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Equation (9a) is exact, but its approximate evaluation cannot be

carried out unless the termI h yzpdt can be neglected. From

Eq. (7) we know that @] ro s:.nB dt = f h szdt is a pertur-

l 1
bation term and therefore in general its absolute value should

be less than unity which is the unperturbed term. Unless

t
f hoszdt is much less than unity the accuracy of N depends on

t.
i

the number of fractions used, as demonstrated in the following

case

N0=l

X
N, = 1 +Jr Pdx = 1.116,181,855
x5

X

N2 =1+ R,n(1+f de) = 1.109,913,806

s .
1

Y — h) 1 (X de —
l.‘3 - . T x -_
1+ &n (l+f de)
X. X .
i
X

1

N, =1+ _ Pdx = 1.110,118,675

1+ Pdx

X
Xi 1+ zn(1+L de)
X. '
1

1




TABLE AI

N AND t ACCURACY COMPARISON

Xi "0.01, X = 0,
-6 _ -3 3. 2
comen b= 0.32369x10 °(Mars), GM = 0.295913x10 > (a.u.) JHay
Parameters) , 1.5914690 a.u., e =0,
P p
\ R radius
-3 -4 -4
s_(a.u.) 1073 (44R) 1074 (4.4R) 0.25x10 4 (1.1R)
a (a.u.) 1.334,011,000 1.332,574,000 1.332,454,000
e 0.238,284,200 0.238,142,400 0.238,131,500
o (deg.) 151.730,843 151.972,132 151.992,166
N, 1. 1. 1.
N 1.010,377,590 1.109,913,806 1.383,419,071
N, 1.010,377,776 1.116,118,675 1.39G,855,751
N, 1.010,377,778 1.110,124,055 1.391,487,836
N, 1.010,431,625 1.116,181,855 1.467,292,800
t, (day) 1.312,353,898 1.311,543,912 1.311,478,094
t, 1.306,661,757 1.303,101,740 1.303,121,932
ty
t, 1.306,661,635 1.303,094,916 1.303,075,164

1.306,639,661

1.302,857,424

1.302,549,041
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APPENDIX IT

DIFFERENTIAL EQUATIONS WITH PERTURBING SINGULAR DAMPING

Many physical problems are characterized by the
presence of a perturbing force which can be either constant
or varying. The exact solution of a simple linear oscillator
with constant damping is well known, but that with arbitrarily
varying damping is unobtainable without resorting to numerical
integration. For example, the following differential equation
for a linear oscillator with a perturbing singular damping

term cannot be solved exactly by presently known methods and
functions

2
g~% + eji %% + w2y =0 (Al)
dx X

where ¢ is a positive real parameter much less than unity
and m2 a positive real constant of o(l). It can be
shown that for |x| > Ye Poincaré's perturbation method of
small parameter expansion will yield a first order homogeneous
solution accurate to o 52 ;25 )which is singular as x-0.
For 0 < |x| < Ve higher order perturbation solution cannot
improve the accuracy of the solution in the neighborhood of
the singular point at x=0, because of the apparent singular
nature of the perturbing term in Eg. (Al).

With the aid of a variable transformation, an approxi-
mate solution of Eqg. (Al) can be shown[gl to have the form
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aad -
X 2 1 X . & 82
l] w+€—2-—2—dx % "[ ——Z-dX"lj 2w+—7dx (A2)
X, X X, X X! X dx
y = e Cl + C2 e e
X,
- 1 =
where Cl = y(t,)
5 (A3)
€ 1
and c, = y ') + ife + 5 ;f y(ty)
i

It is important to note that the solution in the form of Eqg. (A2)

is nonsingular as x+0 from negative values.

In this appendix we present results from Reference 9
showing that Eq. (A2) 1s at least accurate to 0(52), as x>0 from
negative values, by comparing it with the "exact" solution
obtained by numerically integrating Eqg. (Al). Fig.A3 shows,
for the casc e= 10_4, the comparison of relative difference

hetween

1 tha a luticn v nd the numerical

he numericaily i“;teg'la ted

solution . The perturbation solution is also shown in Fig.A3
YNI IS

for comparison. The perturbation solution 1is computed only up

to X = —10_4, since the first order perturbation solution is no

longer valid for

| X <10—4 and its error increases as o(e2 %25 .

It is seen by comparison that the approximate solution is orders
of magnitude mcre accurate than the first order perturbation
solution in the region ne.r the apprarent singular point. Fig.A4d
shows that the variation o7 accuracy of the approximate solution
is at least of the order of 52. Table AII shows the corresponding

numerical values used in plotting Fig.A4.
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